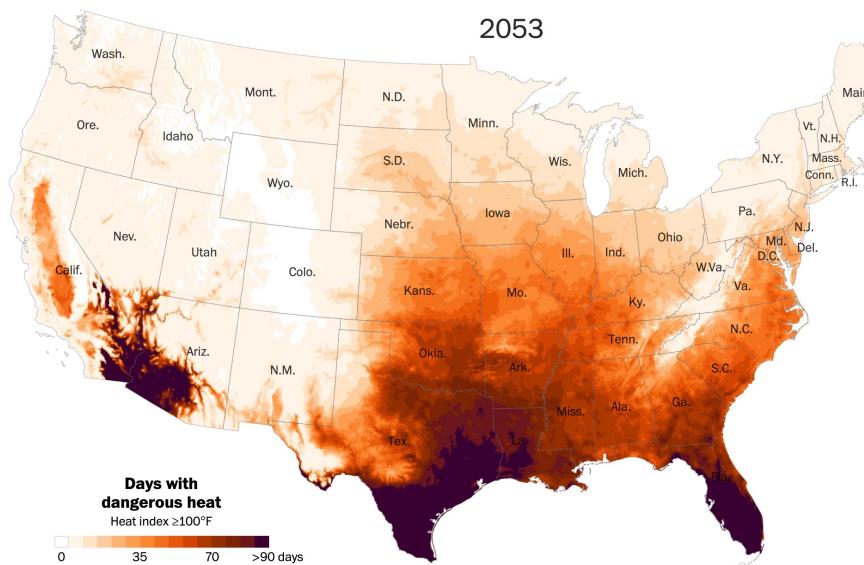


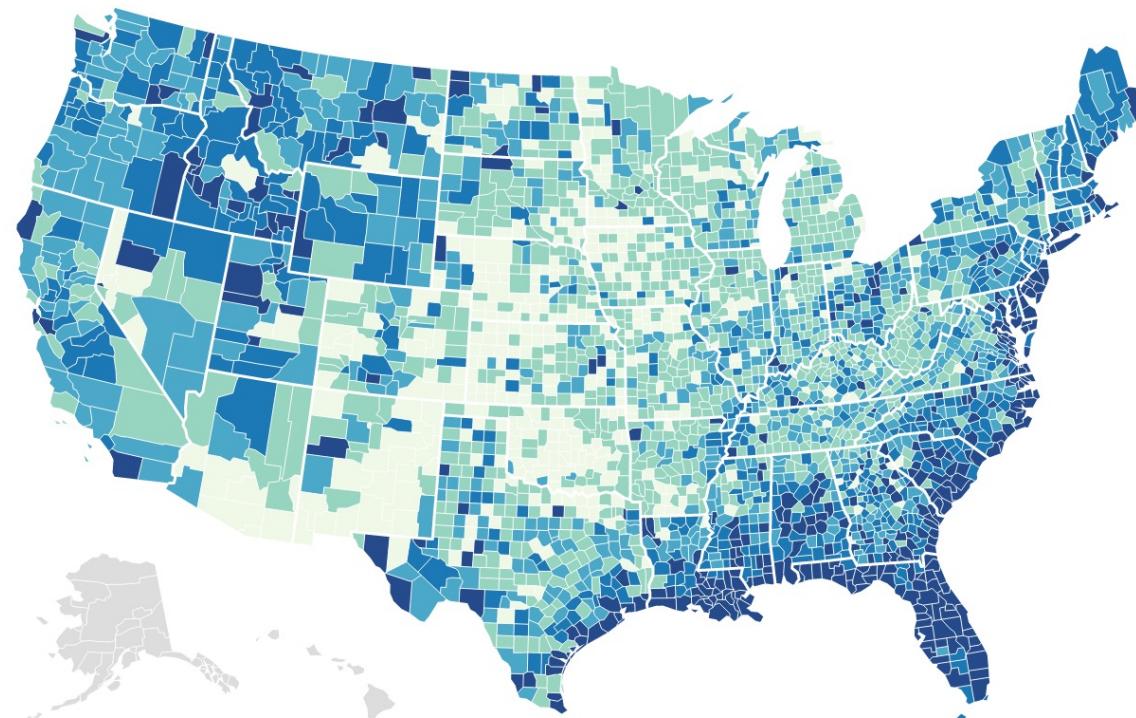
The Smart Surfaces Coalition is made up of more than 40 leading national and international organizations with a shared commitment to creating **cooler**, **healthier**, and **more resilient** cities by cost-effectively working to reduce the impacts of extreme urban heat and flooding.


What Are Smart Surfaces?

Infrastructure strategies that cost-effectively manage urban heat and stormwater while maximizing health, energy, climate, and resilience co-benefits

Source: [Smart Surfaces Coalition & Carnegie Mellon University](#)

By mid-century, nearly two-thirds of Americans will experience perilous heat waves, with some regions in the South expected to endure **more than 70 consecutive days over 100 degrees.**¹

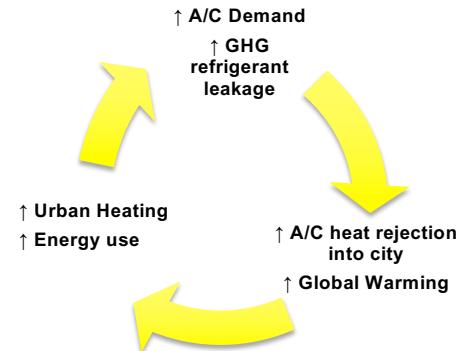

¹[Washington Post, 2023](#)

Source: [Washington Post](#)

Where flood risk is projected to rise fastest in the US

A new analysis projects changes in flood risk between 2020 and 2050 by zooming in on every neighborhood across the U.S.

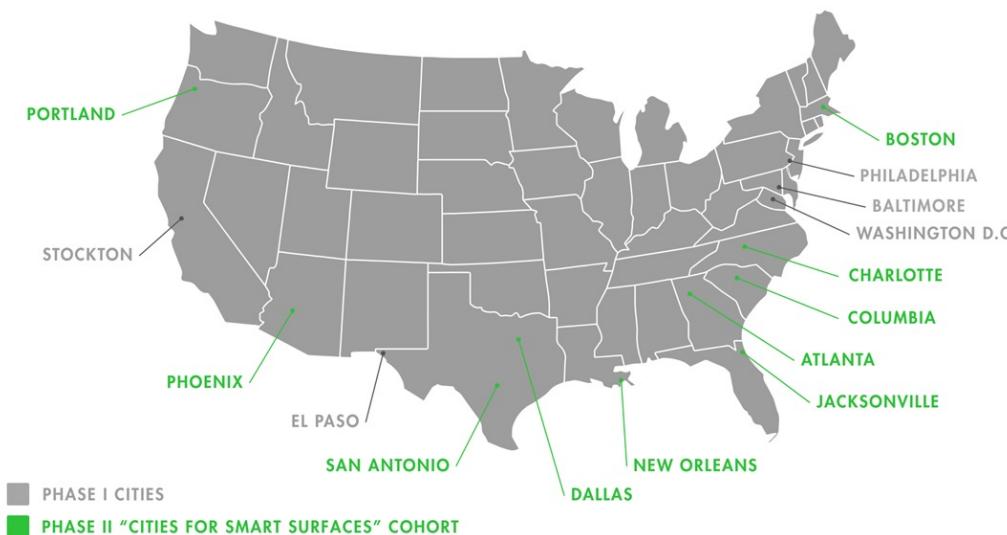
Percentage rise, 2020-2050
0 5 10 20



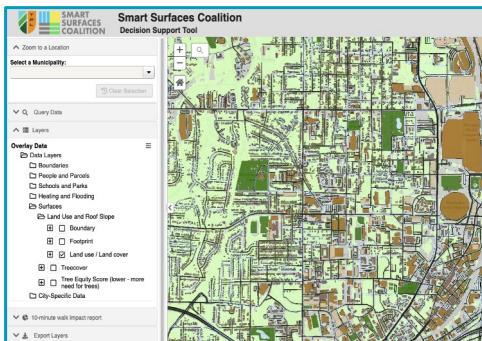
Flood damage measured in 2020 U.S. dollars.

Map: The Conversation/CC-BY-ND • Source: Wing, et al. 2022 • Created with Datawrapper

Cities Need Rapid Citywide Cooling

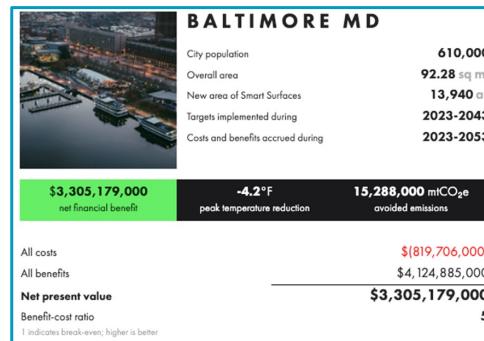

Air conditioning drives climate change and makes cities hotter

- ⚠️ **Climate Change:** In the US, AC already contributes over 300 megatons of CO₂ annually.¹ AC use is projected to more than double by 2050 under business-as-usual.²
- ⚠️ **Urban Heat:** AC exhausts heat to outdoor air, which can increase urban temperatures by 3°F during multi-day heat events.³
- ⚠️ **Heat Deaths:** During heat waves, mortality risks increase by 2.5% per every 1°F increase in temperature.⁴
- ⚠️ **Peak Demand & Cost Increases:** During high-heat days, each 1°C/1.8°F of additional temperature rise increases peak electricity load up to 4.6% & total electricity consumption up to 8.5%


Cities for Smart Surfaces Program

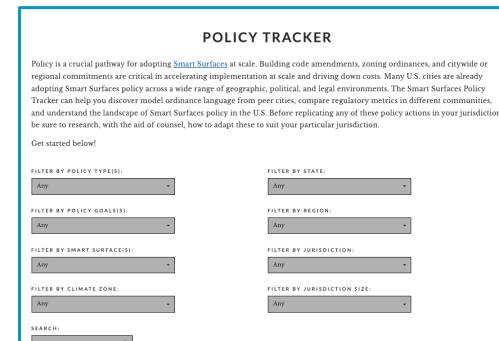
SSC has partnered with 15 metro areas across the US to facilitate policy, program and project adoption of Smart Surfaces

Policy & Planning Platform Tools


Decision Support Tool

Provides cities with highly detailed characterization of albedo, porosity, surface and ambient temperatures, along with census-tract level population health and equity data.

[Watch DST Demo](#)


Benefit-Cost Analysis Tool

Enables cities to model the financial, health, environmental, and energy impacts of Smart Surface infrastructure interventions using at the census tract, city, and metro area levels.

[Watch BCAT Demo](#)

Smart Surfaces Policy Tracker

Enables cities to search from 2,000 Smart Surfaces policies and codes from all states to craft policies. SSC also developed model policy language to enable citywide adoption.

[Visit SSPT Site](#)

Project Implementation Platform Tools

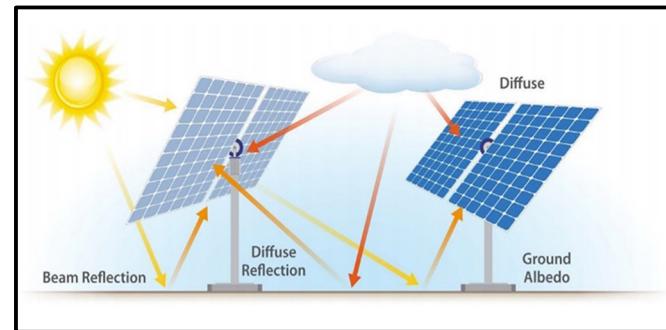
- ✓ **Smart Surfaces Spec Sheet** – spec sheet with cost & benefit data and suggested thresholds
- ✓ **Smart Surfaces “Spec Deck”** – slide deck of detailed specifications + case studies
- ✓ **Project Checklist** – List of smart surface strategies with eligible credit info for LEED/Envision
- ✓ **Project Level Calculator Tool** – Excel based tool for calculating benefits of projects
- ✓ **Project Benefits One-Pager** – Designed one-pager that automatically populates benefit data from calculator

Key Co-Benefits from City & Metro Adoption of Smart Surfaces

City / Metro	Full City Adoption					Full Metro Adoption**		
	Urban Core Cooling	Maximum Cooling	Electricity Savings	Stormwater Managed (Gallons/Yr)	Health Benefits	Electricity Savings	Stormwater Managed (Gallons/Yr)	Health Benefits
Atlanta	3.2 °F	6.9°F	\$244,580,000	16,158,000,000	\$246,920,000	\$2,103,080,000	264,497,000,000	\$1,348,810,000
Boston	4.5 °F	7.3°F	\$81,350,000	6,336,000,000	\$531,880,000	\$609,820,000	112,717,000,000	\$1,254,350,000
Charlotte	2.7 °F	6.6 °F	\$320,040,000	33,521,000,000	\$429,140,000	\$477,430,000	63,271,000,000	\$547,040,000
Columbia	3.5 °F	5.3 °F	\$70,630,000	12,394,000,000	\$120,290,000	\$225,530,000	37,500,000,000	\$246,150,000
Dallas	3.5 °F	6.9 °F	\$466,580,000	39,891,000,000	\$915,550,000	\$2,086,280,000	241,922,000,000	\$3,396,350,000
Jacksonville	4.6°F	6.3 °F	\$406,800,000	77,465,000,000	\$1,701,170,000	\$440,670,000	65,758,000,000	\$1,615,920,000
New Orleans	3.1 °F	6.8 °F	\$149,640,000	17,802,000,000	\$1,012,590,000	\$353,360,000	43,242,000,000	\$1,119,600,000
Phoenix	2.1 °F	4.6 °F	\$692,380,000	11,215,000,000	\$777,430,000	\$1,507,100,000	26,848,000,000	\$874,920,000
Portland	3.3 °F	7 °F	\$109,020,000	13,931,000,000	\$983,340,000	\$308,080,000	49,000,000,000	\$1,127,590,000
San Antonio	3.6 °F	7.5 °F	\$422,190,000	48,103,000,000	\$1,432,550,000	\$523,510,000	62,977,000,000	\$1,627,210,000
Total	3.4 °F (Avg)	6.5 °F (Avg)	\$2,963,210,000	276,816,000,000	\$8,150,860,000	\$8,634,860,000	967,732,000,000	\$13,157,940,000

*Modeling assumes 90% low-slope cool roof adoption, 50% steep-slope cool roof adoption, 25% cool pavement adoption, 1% solar, 3–4% of surfaces converted to permeable pavers/bioretention, and city-customized tree canopy targets. Implementation is assumed to be linear, occurring from 2025 – 2040, **with benefits accruing through 2050**.

**Metro adoption includes city adoption. Cooling estimates not available for metro area due to data availability limitations.


Mining Data from Cities for Smart Surfaces for Other Analysis

Cool roofs provide:

1. **lower surface and air temperatures**
2. **increased irradiance** from reflected solar radiation

[Green Building News](#)

[National Laboratory of the Rockies](#)

A 2023 [meta study](#) found that cool roofs can boost energy production of monofacial and bifacial solar systems by **0.7%** and **4.55%** respectively, per 0.1 albedo increase.

*Initial SSC analysis has found that, over a 25-year lifespan, bifacial solar panels on a cool roof can generate **20+%** **more electricity** than monofacial panels on a conventional dark roof. This corresponds to an increase of **44-80% in NPV** (25 years, 5% nominal discount rate).*

