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Background

▪ Need to increase transmission capacity in the US to enhance bulk power system reliability, serve 

new loads, and improve interconnection capabilities.
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* Department of Energy, “2023 National Transmission Needs Study”, 2023

▪ At the planning level, infrastructure capacity upgrades can be achieved by new (or re-built) lines,

voltage upgrades, or reconductoring projects.



Motivation
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Transmission planning happens at different stages

▪ Decisions around transmission line capacity 

upgrade depend on conductor selection.

▪ The large offering of commercially-available 

advanced conductors reduces the ability to 

standardize designs.

Transmission capacity expansion (system-
wide) where a line capacity upgrade is 
identified

1

Capacity upgrade selection (reconductoring, 
rebuild, voltage upgrade)

• Preliminary conductor selection
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Detailed line design (e.g. PLS-CADD)3

Project engineering and construction4

* SouthWire, “C7 Overhead Conductor”, 2019



Proposed Value for SEOs
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▪ A simple and intuitive tool, REFA, short for Reconductoring Economic and Financial Analysis tool

• Compare different transmission capacity options.

• Assess economic performance of different conductors.

▪ The tool is publicly available and technology-neutral.

▪ Helps state energy offices

• Understand intricate relationships between techno-economic parameters and the cost of transmission 

upgrade projects.

o Identify important parameters.

• Communicate with utilities and regulators regarding the selection of transmission upgrade projects.

• Better represent transmission upgrade costs to inform state-wide comprehensive energy plans.

• Workforce training.



Reconductoring Economic and Financial Analysis (REFA) Tool
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Access at: refa.lbl.gov

Input Parameters

Techno-economic Analysis

Decision-Making Support

Net-Present Value AnalysisTechnical Evaluation - Ampacity, Sag, Corona

Conductors 

Database

Project 

Requirements
Installation Environment 

and Loading.

Economic 

Parameters

Portfolio of Projects

Select Best Project Options Compare Conductor Performance Analyze Sensitivity

https://refa.lbl.gov/


▪ Ampacity calculations are based on the IEEE 738-2023 standard for calculating the

current-temperature of bare overhead conductors

▪ Sag calculations follow the guidelines from CIGRE TB-324

▪ Corona inception voltage calculations use Peek’s empirical formula

REFA Methodology

Technical Evaluation
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[1] Youba Nait Belaid, Miguel Heleno, Kristina LaCommare. “Reconductoring Economic and Financial Analysis (REFA) Tool”, Oct. 2025, LBNL, 

url: https://refa-app.lbl.gov/refa-documentation

https://refa-app.lbl.gov/refa-documentation
https://refa-app.lbl.gov/refa-documentation
https://refa-app.lbl.gov/refa-documentation
https://refa-app.lbl.gov/refa-documentation
https://refa-app.lbl.gov/refa-documentation


▪ The Net-Present Value of project costs (NPC) is evaluated for each conductor over a 

defined time horizon Y.

▪ The total cost includes structure, conductor, losses, and congestion costs.

▪ Conductor cost: material cost, installation cost, accessories cost.

▪ Structure cost

• By default, modeled as a generic per-unit cost.

• Can be customized based on the structure type (tangent, angled, deadend, etc.).
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REFA Methodology

Net-Present Cost Analysis
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Reconductoring: Conductors replaced at t=0, and structures kept for their 

remaining life.

0 10 20 30 40 50 60 70 80 90 100
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REFA Methodology

Net-Present Cost Analysis

Rebuild: Structures and conductors replaced at t=0

Replace Structures

Replace Conductors
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Structure Lifetime

Structure Remaining Life
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Time 
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Time 

(years)
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REFA Methodology

Cost of Line Losses

▪ REFA only considers losses due to the Joule heating 

effect.

▪ Two specific entries from the users are needed to 

calculate the cost of losses

• Cost of energy 𝐶𝑑𝑜𝑙,𝑀𝑊 (in $/MW)

• Load Factor (average load / peak load)

▪ The calculation considers a typical approximation of 

the Loss of Load Factor (LLF) based on the Load 

Factor (LF).

𝐶𝑙𝑠 = 𝑅 ∗ 𝐼𝑝𝑒𝑎𝑘
2
∗ 𝐿𝐿𝐹 ∗ 𝐶𝑑𝑜𝑙,𝑀𝑊

𝐿𝐿𝐹 = 0.3 ∗ 𝐿𝐹 + 0.7 ∗ 𝐿𝐹2
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▪ The cost of congestion is calculated by multiplying the

marginal cost of congestion 𝐶𝑑𝑜𝑙,𝑀𝑊ℎ (in $/MWh) by

the energy that must be re-routed to other lines (at

higher costs) due to congestion 𝐸𝑐𝑔.

* Millstein et al., “Empirical Estimates of Transmission Value using Locational Marginal Prices”, 2022

REFA Methodology

Cost of Congestion

𝐶𝑐𝑔 = 𝐸𝑐𝑔 ∗ 𝐶𝑑𝑜𝑙,𝑀𝑊ℎ

𝐸𝑐𝑔

▪ The marginal cost of congestion 𝐶𝑑𝑜𝑙,𝑀𝑊ℎ is estimated

using the difference in locational marginal prices

(LMPs) in adjacent nodes of ISO/RTO regions.
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Using the REFA Tool

Create and Manage Projects

1
2

3
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Using the REFA Tool

Locate Projects

1

2
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Using the REFA Tool

Analyze Projects

2

1



▪ A real reconductoring project in Louisiana is

selected from publicly available data.*
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Case Study

State Louisiana Voltage 230 kV Structure Unit Cost 105,479.1 $

Length 8.5 km Loading NESC 250B Light Congestion Cost 6.0 $/MWh

Initial 

Capacity
640 MW Required Capacity 837 MW Candidate Conductors

ACSR CHUKAR 1780 kcmil

ACCR DIVER 1272 kcmil

Parameter Value Parameter Value

Wind speed 0.61 (m/s) Azimuth 90°

Wind direction 90° Ambient Temp. 30°

Emissivity 0.5 Day of year 249th

Solar absorptivity 0.5 Time 15:00

Horizon 30 years Annual Inflation 2 %

Conductor Lifetime 40 years Structure Lifetime 60 years

Conductor 

Remaining Life
25 years

Structure Remaining 

Life
15 years

WACC 7 % Ruling Span 90 m

Cost of Energy 30 $/MWh Max Span 110 m
Fig. 1. Selected case study (cyan highlight)

* EPRI, “Advanced Conductor Experience”, 2024 https://msites.epri.com/rd/research/024056/advanced-conductor-experience

More details: 

https://escholarship.org/uc/item/58v3d3m5

https://msites.epri.com/rd/research/024056/advanced-conductor-experience
https://msites.epri.com/rd/research/024056/advanced-conductor-experience
https://msites.epri.com/rd/research/024056/advanced-conductor-experience
https://msites.epri.com/rd/research/024056/advanced-conductor-experience
https://msites.epri.com/rd/research/024056/advanced-conductor-experience
https://escholarship.org/uc/item/58v3d3m5


▪ Performance of conductors based on sag, ampacity, and 

corona inception voltage is evaluated for each conductor

▪ ACSR 1780 does not satisfy the current rating requirement
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Case Study

Comparison of Candidate Conductors

▪ Congestion costs make using 

ACSR 1780 more costly than the 

ACCR 1272.

Fig. 3: Technical performance of candidate conductors.

(a) Sag (b) Ampacity (c) Corona Inception Voltage

Fig. 4: Net-present cost of reconductoring using 

candidate conductors



▪ Results from REFA using its conductor database show that other conductors can

achieve a lower cost, while satisfying the project requirements

▪ The selection of least-cost conductors changes when losses are considered
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Case Study

Conductor Selection Using REFA

Fig. 5: Net-present cost of reconductoring using REFA conductor database

Case With Losses 

(Load Factor = 0.63, 

Time Horizon = 30 years, 

Cost of Energy = 30 $/MWh)



▪ Different project options (rebuild, 

reconductoring, voltage upgrade) 

can be evaluated and compared

▪ The tool shows the conductor 

achieving the least-cost for each 

project option
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Case Study

Selection of Project Options Using REFA

Fig. 6: Net-present cost of different investment options



▪ REFA fills a critical gap between transmission expansion and detailed line design

• Provides a simple techno-economic comparison of different project options, including 

advanced conductors

• Evaluates projects over a selected time horizon

▪ The tool can be used to communicate investment options to non-technical audiences

• Simple and intuitive

• Publicly available

• Technology-neutral

▪ Continue calibrating the tool with real-world case studies and enhancing the tool based on

user feedback. We welcome your thoughts and suggestions!

Conclusions and Next Steps
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Thank You!

Contact

Miguel Heleno : MiguelHeleno@lbl.gov

Youba NaitBelaid : YoubaNaitBelaid@lbl.gov

Kristina LaCommare : kshamachi@lbl.gov

Access the REFA tool at: 

refa.lbl.gov

mailto:MiguelHeleno@lbl.gov
mailto:YoubaNaitBelaid@lbl.gov
https://refa.lbl.gov/
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Appendix



▪ Ampacity calculations are based on the IEEE 738-

2023 standard for calculating the current-

temperature of bare overhead conductors

▪ The heat transfer model is implemented to calculate 

the conductor ampacity 𝐼𝑐 at the maximum 

conductor temperature 𝑇𝑐 = 𝑇𝑚𝑎𝑥

▪ The conductor temperature and resistance are 

calculated for the peak current

▪ The conductor ampacity varies due to changes in 

installation environment

* Adapted from: DoE report on Dynamic Line Rating, June 2019 

Solar Heating 

(𝑞𝑠)

Joule 

Effect 

Heating 

(𝐼2𝑅(𝑇𝑐))
Wind 

Cooling 

(𝑞𝑐)
Radiative 

Cooling (𝑞𝑟)

REFA Methodology

Ampacity Calculations
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* CIGRE Technical Brochure 324,

* Alawar et al., “A hybrid numerical method to calculate the sag of composite conductors”, 2006

REFA Methodology

Sag Calculations
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▪ Sag calculations follow the guidelines from 

CIGRE TB-324

▪ Conductor length is assumed to evolve 

linearly with horizontal tension, H, and 

change in temperature, ΔT

▪ The methodology considers both thermal 

expansion of the conductor and strain from 

conductor weight, wind, and ice Bisection

𝐿1 = 𝐿𝑡𝑒𝑚𝑝 ∗ (1+ ൗ𝐻1
𝐸∗𝐴)

𝐿𝑡𝑒𝑚𝑝 = 𝐿𝑟𝑒𝑓 ∗ (1+α ∗ Δ𝑇)

Sag 

𝐷0
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𝐻0

Length 

𝐿0

Length 

𝐿𝑟𝑒𝑓

Length 

𝐿𝑡𝑒𝑚𝑝

Length 

𝐿1

Sag 

𝐷1

Tension 

𝐻1

Temperature 

Change ΔT



REFA Methodology

Corona Effect Calculations

Corona effect shown as a visible glow  (Image credit: 

https://electronicslovers.com/2018/07/corona-effect-can-

influence-the-overhead-transmission-lines.html)

▪ Corona effect depends on the conductor 

geometry/material, phase bundling, voltage level, 

pollution, aging, and atmospheric/weather conditions

▪ The voltage at which the corona inception field 

produces a discharge, called the inception voltage, 𝑉𝑐, 
is calculated for each considered conductor*

𝑽𝒄 is the inception voltage [kV].

𝒎𝒄 is the rugosity coefficient of the conductor (1 for polished conductors, 0.92-0.98 for dirty conductors, and 0.8-0.87 for stranded conductors).

𝜹 is the air correction factor (calculated using the atmospheric pressure P in atm, the temperature T in °C, the altitude h in meters). 

𝒎𝒕 is the weather correction factor (considered as 0.8 for rainy conditions).

r is the conductor's radius. 

𝑮𝑴𝑫 is the geometrical mean distance between phases. 

𝑵𝒄𝒅 is the number of conductors in the bundle. * F. W. Peek. “The law of corona and the dielectric strength of air”. In: Proceedings of the 

American Institute of Electrical Engineers 30.7 (July 1911).
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